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We survey the highly visual models of correlated electronic structure provided by
spin-coupled (SC) theory for the bond-breaking and bond-formation processes
along the minimum energy paths in chemical reactions. Given that SC theory uses
the most general wave function based on a single orbital product, it arguably
represents the highest level of theory at which one can obtain directly such orbital
models. The results provide highly visual insights into the electronic rearrange-
ments occurring in a wide range of organic chemical reactions.
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1. Introduction

Concepts taken from electronic structure theory have been of immense importance in the

historical development of chemistry, and they continue to play a key role in the modern
understanding of molecular electronic structure and reactivity. Such concepts not only

allow us to rationalise but, in many cases, also to make predictions for whole classes of

new systems. Classical valence bond (VB) theory played an important role in directing

early qualitative models of bonding, and many VB concepts are still key components of the

language of chemistry. Nonetheless, for practical calculations, VB theory has mostly been
eclipsed by molecular orbital (MO) theory and, especially, density functional theory

(DFT). On the other hand, several groups have shown that it is possible to develop

efficient implementations of VB theory [see e.g. 1,2] that can contribute significantly to our

understanding of chemical bonding and reactivity. Such VB studies also provide useful

benchmarks against which popular forms of analysing MO theory and DFT electron

densities can be assessed.
Simple orbital models are at the heart of the most popular and successful qualitative

interpretations of electronic reaction mechanisms, such as the Woodward-Hoffmann rules

[3,4], Fukui’s frontier orbital theory [5], and the Dewar–Zimmerman treatment [6–8]. One

common feature of these interpretations is that they are all based on rather low-level semi-

empirical quantum-chemical approaches, such as Hückel molecular orbital (HMO) theory

or its extended version (EHT). The many-electron wave function in HMO and EHT is a
single Slater determinant, in which the orbitals can be only doubly or singly-occupied.

As a rule, the qualitative features of the HMO and EHT orbitals do not change much at

higher levels of theory, if the wave function remains a single Slater determinant, and are

usually well-reproduced by ab initio Hartree–Fock calculations. However, it is now widely

acknowledged that the accurate description of the potential energy surface for a reacting

system requires a significantly more advanced ab initio wave function constructed at
or beyond the complete active space self-consistent field (CASSCF) level of theory. A wave

function of this type typically involves a large number of configurations. If the wave

function is dominated by a very small number of configurations, or if all active space

orbitals have occupation numbers very close to one or two, then it is still possible to think

that the shapes of the active space orbitals carry some qualitative electronic structure

information. However, in many cases all configurations have relatively small weights and
a number of active space orbitals have distinctly fractional occupation numbers;

while numerically accurate, a wave function with these characteristics is probably too

complicated to allow a meaningful direct interpretation in qualitative terms. As spin-

coupled (SC) theory uses the most general wave function based on a single orbital product, it

arguably represents the highest level of theory at which one can obtain directly orbital
models of the bond-breaking and bond-formation processes accompanying organic

chemical reactions.

2. The SC wave function

Spin-coupled theory makes use of the most general N-electron wave function based

on a single orbital product which can be written (in unnormalised form) as

�SM ¼ Âð 1 2 . . . N�N
SMÞ ð1Þ
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In this expression Â stands for the antisymmetriser,  1– N are singly-occupied orbitals,

free from any orthogonality restrictions (often referred to as spin-coupled orbitals) and

�N
SM is a general N-electron spin eigenfunction which can be expanded in a suitable

N-electron spin basis

�N
SM ¼

Xf NS
k¼1

CSk�N
SM;k ð2Þ

The subscripts S and M indicate that �N
SM;k is a simultaneous eigenfunction of the

operators for the total spin of the system Ŝ2 and its z-projection Ŝz, with

eigenvalues S(Sþ 1) and M, respectively, in atomic units. The index k distinguishes

between the f NS unique spin eigenfunctions sharing the same pair of S and M values:

f NS ¼
N

N=2� S

� �
�

N
N=2� S� 1

� �
ð3Þ

The orbitals  1– N are approximated by MO-style expansions within a suitable atomic

orbital (AO) basis f�pjp ¼ 1, 2, . . . ,mg

 � ¼
Xm
p¼1

c�p�p ð4Þ

Equations (1) and (2) define the SC wave function proposed by Gerratt and Lipscomb [9].

An identical wave function ansatz was introduced slightly later by Ladner and Goddard

[10], with the appellation full generalised valence bond (full-GVB) wave function.
The optimal SC orbitals [Equation (4)] and spin-coupling pattern [Equation (2)] are

determined variationally, through a simultaneous optimisation of the energy expectation

value corresponding to the SC wave function in Equation (1) [11,12]

E ¼
h�SMjĤj�SMi

h�SMj�SMi
¼ D�1

XN
�;�¼1

Dð�j�Þh�jĥj�i þ
1

2

XN
�;�;�;�¼1

Dð��j��Þh��j��i

" #
ð5Þ

with respect to all orbital and spin-coupling coefficients c�p and CSk. In this equation, Ĥ

denotes the standard non-relativistic electronic Hamiltonian

Ĥ ¼
XN
i¼1

ĥi þ
1
2

XN
i 6¼j

r�1ij ð6Þ

where h��j��i ¼ h�ð1Þ�ð2Þjr�112 j�ð1Þ�ð2Þi are two-electron integrals over SC orbitals, while

D, D(�|�) and D(��|��) stand for the SC normalisation integral (zeroth-order density

matrix), and the elements of the SC first- and second-order spinless density matrices,

respectively.
At first glance, there is no immediate reason to classify the SC wave function �SM in

Equation (1) as a VB, rather than as a MO theory construction. In fact, �SM can be viewed

as a generalisation of a group of approaches, which have always been thought of as

MO-based: the closed-shell, open-shell and spin-projected Hartree–Fock methods.

The link between the SC approach and classical VB theory is revealed by an alternative
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representation of the SC wave function [Equation (1)] as a combination of (or, more

succinctly, resonance between) f NS VB-style structures

�SM ¼
Xf NS
k¼1

CSk�SM;k ð7Þ

where

�SM;k ¼ Âð 1 2 . . . N�N
SM;kÞ ð8Þ

The resonance energy relative to any structure �SM;k can be taken to be equal to the

difference between its energy expectation value and the full SC energy.
Although the expansion in terms of resonance structures in Equation (7) is valid

for any set of spin eigenfunctions, the link to VB theory is most apparent when use

is made of the Rumer spin basis. In the case of well-localised SC orbitals, it

becomes possible to establish a direct analogy with the covalent structures of classical

VB theory.
In MO theory, the expansion in Equation (7) would be regarded as a multi-

configuration (MC) construction in terms of configurations state functions (CSFs), which

include the same product of non-orthogonal orbitals in combination with different spin

functions [Equation (8)].
The calculation of SC wave functions requires significant computational effort

which arises mainly from the use of non-orthogonal orbitals and of the full spin space.

This restricts the number of SC orbitals that can be handled by existing codes on

current computer systems to about 14. However, sufficiently accurate descriptions of

many chemical problems can be achieved by applying a higher-level approach to a

limited subset of ‘active’ (or ‘valence’) orbitals only, while keeping the remaining

‘inactive’ (or ‘core’) orbitals doubly-occupied. Typical examples of orbitals that can be

left doubly-occupied are given by the orbitals making up the inner shells of atoms and

by the � orbitals in � electron treatments of planar conjugated molecules. The

introduction of core–valence separation leads to a significant reduction of the

numerical effort required for computing any post-Hartree–Fock wave function and

allows calculations on systems with much larger numbers of electrons. The idea was

first suggested by McWeeny [13] in the context of an orthogonalised VB approach. Its

implementation within any post-Hartree–Fock method, including SC theory, is

reasonably straightforward.
The introduction of n doubly-occupied core orbitals changes the expression defining

the SC wave function [Equation (1)] to (for further details, see [14])

�SM ¼ Âð’21’
2
2 . . . ’2n �	�	 . . .�	|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n �	 pairs

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{core

 1 2 . . . N�N
SMÞ ð9Þ

It can be shown that this wave function is invariant (except for the multiplication by a

constant factor) to any non-singular linear transformation mixing the n core orbitals, and

does not change if a multiple of any core orbital is added to any valence orbital. As a

consequence, without any loss of generality, the set of core orbitals can be taken to be

orthonormal and orthogonal to the valence orbitals. Due to these orthogonality
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properties, the expression for the electronic energy of wave function (9) can be written

down in a form which closely resembles Equation (5)

E ¼ Ec þD�1
XN
�, �¼1

Dð�j�Þh�jf̂ cj�i þ
1

2

XN
�, �, �, �¼1

Dð��j��Þh��j��i

" #
ð10Þ

The term Ec corresponds to the core energy

Ec ¼
Xn
i¼1

hijĥþ f̂ cjii ð11Þ

and f̂ c stands for the Fock operator for the core orbitals, which involves the well-known

Coulomb and exchange operators Ĵi and K̂i associated with core orbital ’i

f̂ c ¼ ĥþ
Xn
i¼1

ð2Ĵi � K̂iÞ ð12Þ

The core orbitals are expanded in the same basis as the SC orbitals [cf. Equation (4)],

’i ¼
Xm
p¼1

cip�p ð13Þ

The most significant computational savings associated with the introduction of the core–

valence separation are achieved when the core orbitals are kept fixed, which reduces the

computational effort required for a calculation on a system with 2nþN electrons to that

for a system with N electrons. The simultaneous optimisation of all core and valence

orbitals and spin-coupling coefficients is more expensive computationally, but not

prohibitively so, even if use is made of the second-order constrained optimisation

procedure described in [14]; newer approaches based on the CASVB strategy [15–19] are

usually considerably faster.1

The use of different types of spin functions to construct the N-electron spin

eigenfunction �N
SM [Equation (2)] can highlight particular aspects of the optimal spin-

coupling pattern established between the SC orbitals. Most applications of SC theory

make use of the sets of spin functions introduced by Rumer [20], Kotani [21] and Serber

[22,23]. These three sets of spin functions are constructed using synthetic methods. The full

N-electron spin basis is assembled consecutively from smaller units, starting with a one- or

two-electron spin function and adding a single one- or two-electron spin function at a time.

In an alternative analytic method, introduced by Löwdin [24,25], the spin eigenfunctions

are obtained by projecting out the components with the required S value from a suitable

set of f NS linearly independent products of N one-electron spin functions with the same

M¼S value (this corresponds to the so-called principal case, which is assumed throughout

this article; spin functions corresponding to other values of M can be obtained by

application of appropriate step-up and step-down operators).
Each of the f NS unique spin functions within the Rumer spin basis represents a product

of N	 ¼
1
2N� S singlet pairs and 2S � spin functions

R�N
SM;k ¼

1ffiffiffi
2
p ½�ð�1Þ	ð�2Þ � �ð�2Þ	ð�1Þ� . . .

1ffiffiffi
2
p ½�ð�N�2S�1Þ	ð�N�2SÞ

� �ð�N�2SÞ	ð�N�2S�1Þ��ð�N�2Sþ1Þ . . .�ð�NÞ ð14Þ
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A spin function of this type is fully identified by the list of its singlet pairs

k � ð�1 � �2,�3 � �4, . . . ,�N�2S�1 � �N�2SÞ ð15Þ

In fact, the number of spin functions that can be formed according to Equation (14)

vNS ¼
N!

2N	 ðN� 2N	Þ!N	!
ð16Þ

is significantly larger than f NS which indicates that some of these are linearly dependent.

The diagrammatic technique suggested by Rumer [20] and extended to non-singlet
states by Simonetta et al. [26] offers one way of selecting f NS unique functions �N

SM;k. In
this approach, each Rumer spin eigenfunction is derived from an extended Rumer

diagram. The diagrams for a system with N electrons and spin quantum number S are
based on convex (usually regular) polygons with Nþ 1 vertices. The first N vertices are
labelled, say clockwise, with the numbers from 1 to N, and the last vertex becomes the

pole (P). Then 1
2N� S lines are drawn between pairs of the first N vertices and

additional lines are drawn between the remaining 2S points and the pole; none of these
lines are allowed to intersect. It can be shown [26] that the number of distinct extended

Rumer diagrams which can be drawn in this way is f NS , and the associated Rumer spin
eigenfunctions, in which the singlet pairs contain electrons with numbers connected by
the first 1

2N� S lines, while the remaining electrons (with numbers connected to the

pole) are placed within � spin functions are linearly independent. All extended Rumer
diagrams and the corresponding Rumer spin functions for N¼ 5 and S¼½ (f 51=2 ¼ 5)
are shown in Figure 1.

Another option is to make use of the leading term algorithm [26] which is particularly

suitable for computer implementations. Each leading term represents an ordered product
of N� ¼ ð

1
2Nþ SÞ � spin functions andN	 ¼ ð

1
2N� SÞ 	 spin functions. The first leading

term can be written as

�	�	 . . .�	|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N	

�	 pairs

�� . . .�|fflfflfflffl{zfflfflfflffl}
N��N	

� functions

ð17Þ

and each of the following leading terms (2, 3, . . . , f NS ) is obtained from the previous one
by shifting one place to the right the first 	 (reading from left to right) that is followed
by an �, after which all 	 functions to the left of the one that was shifted are returned

1

2

3

4

5

P

1

2

3

4

5

P

1

2

3

4

5

P

1

2

3

4

5

P

1

2

3

4

5

P

(1-2,3-4) (1-4,2-3) (1-2,4-5) (2-3,4-5) (2-5,3-4)

Figure 1. Extended Rumer diagrams and Rumer spin functions for N¼ 5 and S¼½.
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to the positions they used to occupy in the first leading term. Then each leading term is

converted into a Rumer function by inserting a left parenthesis in front of each �, and
a right parenthesis after each 	 (again reading from left to right); every combination of

� and 	 functions enclosed in matching left and right parentheses gives rise to a singlet

pair. The following example shows the sequence of leading terms and the associated

Rumer spin functions for N¼ 5 and S¼½

ð18Þ

The Kotani spin functions K�N
SM;k are formed through successive coupling of

individual electron spins according to the rules for addition of angular momenta. A Kotani

spin function is completely defined by the sequence of partial resultant spins obtained after

combining the spins of the first 1, 2, . . . ,N� 1 electrons, which can be used as a

convenient shorthand representation of the spin function (there is no need to indicate the

last spin SN since it is equal to the total spin S),

K�N
SM;k ¼ ðS1S2 . . .SN�1Þ ð19Þ

The gradual formation of the Kotani spin functions and the values of f NS can be

visualised by means of a Kotani branching diagram (Figure 2). Each circle in this diagram

corresponds to an allowed value of the total spin S for a given number of electrons N.

The spin function ðS1S2 . . .SN�1Þ is represented by the path which follows

the arrows connecting the sequence of points ð1,S1Þ, ð2,S2Þ, . . . , ðN,SÞ. The number of

all possible paths shown inside the circle at (N,S) is equal to f NS , and it is easy to establish

that

f NS ¼ f N�1Sþ1=2 þ f N�1S�1=2 ð20Þ

The branching diagram allows the introduction of an alternative ‘path’ notation for

the Kotani spin functions, given by the complete record of the directions of all upward

and downward arrows (say, as a and b, respectively) connecting the origin (0, 0) and

the final (N,S),

K�N
SM;k ¼ ðck1ck2 . . . ckNÞ, ck� ¼

a if S��1 5S�
b if S��1 4S�

�
ð21Þ
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This ‘path’ notation can be used in order to establish an ordering of the Kotani

spin functions according to the so-called last-letter sequence [27]. If the first non-identical

letters in the paths ðck1ck2 . . . ckNÞ and ðcl1cl2 . . . clNÞ are ck� and cl� (reading from right

to left), then ðck1ck2 . . . ckNÞ is assumed to precede ðcl1cl2 . . . clN Þ if ck� ¼ b. For example,

the last-letter sequence ordering of the five Kotani spin functions for N¼ 5 and S¼½ is

given by

K�N
SM;1 ¼ ðaaabbÞ

K�N
SM;2 ¼ ðaababÞ

K�N
SM;3 ¼ ðabaabÞ

K�N
SM;4 ¼ ðaabbaÞ

K�N
SM;5 ¼ ðababaÞ

ð22Þ

The comparison between the Kotani spin functions in the last-letter ordering from

Equation (22) to the leading terms which give rise to the Rumer spin functions from

Equation (18) shows that the path notation for Kotani spin function k and that for the

leading term f 51=2 þ 1� k are identical, except for the choice of letters. The same applies

to any allowed combination of N and S values. Simonetta et al. [26] have established

a simple relationship between the Rumer spin functions, constructed by means of the

leading-term technique, and the Kotani spin functions, ordered in the last-letter sequence,

according to which Schmidt orthogonalisation of R�N
SM;1,

R�N
SM;2, . . . , R�N

SM;f S
N

produces
K�N

SM;f N
S

, K�N
SM;f N

S
�1
, . . . , K�N

SM;1.
The Serber spin functions S�N

SM;k are assembled consecutively from all four two-

electron singlet and triplet spin functions

�2
00 ¼ 2�1=2ð�	� 	�Þ,

�2
1,�1 ¼ 		, �2

10 ¼ 2�1=2ð�	þ 	�Þ, �2
1,�1 ¼ 		

ð23Þ

S

1 2 5 14

1 2 5 14

1 3 9 28

1 4 14

1 5 20

1 6

1 7

1

1

1 2 3 4 5 6 7 8

0

1/2

1

3/2

2

5/2

3

7/2

4

N

Figure 2. Kotani branching diagram.
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When dealing with an odd number of electrons, it is also necessary to use the one-electron

spin function for the last electron. Similarly to the case of the Kotani spin basis, the

sequence of intermediate values of the total spin provides a compact notation for each

Serber spin function

S�N
SM;k ¼

ð. . . ðð|fflffl{zfflffl}
N=2�1

s12s34ÞS4; s56ÞS6; . . .SN�2; sN�1,NÞ ðfor even NÞ

ðð. . . ðð|fflfflffl{zfflfflffl}
ðN�1Þ=2

s12s34ÞS4; s56ÞS6; . . .SN�3; sN�2,N�1ÞSN�1Þ ðfor odd NÞ

8>><
>>: ð24Þ

The pair spins s��1,� take the values 0 or 1 depending on the singlet or triplet coupling of

the spins of electrons � and �� 1. In the odd-electron case there is no need to record the

spin of the last electron which has to be added to SN� 1, as it is always equal to ½.
The construction of the Serber spin functions can be visualised by means of a Serber

branching diagram (Figure 3), which is similar in concept to a Kotani branching diagram

(Figure 2). A two-electron triplet state can be added to a Serber spin function for (N� 2,S)

in three different ways, illustrated by an upward arrow connecting (N� 2,S) to (N,Sþ 1), a

downward arrow connecting (N� 2,S) to (N,S� 1) and a horizontal arrow connecting

(N� 2,S) to (N,S), respectively (the last two arrows can be drawn only if S4 0 at N� 2).

The addition of a two-electron singlet spin state to (N� 2,S) is denoted by a dashed

horizontal arrow pointing from (N� 2,S) towards (N,S). The odd-electron spin states are

connected to their even-electron precursors by upward and downward arrows, as in the

case of the Kotani branching diagram. For even values of N, the relations involving

successive values of f NS in the Serber spin basis take the form

f NS ¼
f N�2Sþ1 þ f N�2S�1 þ 2f N�2S if S4 0

f N�2Sþ1 þ f N�2S if S ¼ 0

(
ð25Þ

1 2 5 14

1 2 5 14

1 3 9 28

1 4 14

1 5 20

1 6

1 7

1

1

1 2 3 4 5 6 7 8

0

1/2

1

3/2

2

5/2

3

7/2

4

N

S

Figure 3. Serber branching diagram.
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When N is odd, f NS ¼ f N�1Sþ1=2 þ f N�1S�1=2, just as in the case of the Kotani spin basis

[Equation (20)].
The Serber spin functions, similarly to the Kotani spin functions, are fully defined by

the different paths on the Serber branching diagram. This allows the introduction of a

corresponding ‘path’ notation

S�N
SM;k ¼

ðdk1dk2 . . . dkN=2Þ ðfor even NÞ

ðdk1dk2 . . . dkðN�1Þ=2ckNÞ ðfor odd NÞ

(

dk� ¼

A if S� ¼ S��2 and s��1,� ¼ 0

B if S� ¼ S��2 þ 1 ð s��1,� ¼ 1Þ

C if S� ¼ S��2 and s��1,� ¼ 1

D ifS� ¼ S��2 � 1 ðs��1,� ¼ 1Þ

8>>><
>>>:

ð26Þ

(the symbol ckN has the same meaning as in the Kotani path notation [Equation (21)]).
The transformations between the representations of N-electron spin eigenfunction �N

SM

[Equation (2)] in the Kotani, Rumer and Serber spin bases

�N
SM ¼

Xf NS
k¼1

RCSk
R�N

SM;k ¼
Xf NS
k¼1

KCSk
K�N

SM;k ¼
Xf NS
k¼1

SCSk
S�N

SM;k ð27Þ

can be carried out in a straightforward manner with the use of a specialised code for

symbolic generation and manipulation of spin eigenfunctions (SPINS, [28]). This code

is also capable of calculating the changes in the spin-coupling coefficients induced by a

reordering of the SC orbitals.
Probably the most convenient and widely accessible way of calculating fully-

variational SC wave functions is based on the CASVB ideas for transforming CASSCF

wave functions [15–19]. CASVB makes use of the fact that a CASSCF wave

function, just like any full-CI construction, is invariant not only to a unitary but also

to a general non-singular linear transformation of the active orbitals. This property can

be exploited in order to transform this wave function to an alternative equivalent

representation dominated by a small number of configurations. The transformation of

the full-CI space induced by a non-unitary transformation of the orbital space can be

carried out exactly by means of the efficient computational schemes developed in [16].

One straightforward application of the CASVB approach is associated with the

generation of representations of a CASSCF wave function dominated by a single or

multi configuration modern VB component. If we decompose a CASSCF wave function

�CAS into a VB component �VB and its orthogonal complement within �CAS, �?VB,

according to the equation

�CAS ¼ SVB�VB þ ð1� S2
VBÞ

1=2�?VB ð28Þ

the contribution of �VB to �CAS can be maximised by maximising the overlap-related

quantity

SVB ¼
h�CASj�VBi

h�VBj�VBi
1=2

ð29Þ
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This procedure is relatively inexpensive computationally and, with reasonable choices for
the form of �VB, it is fairly robust. An obvious alternative is to minimise the energy
expectation value

EVB ¼
h�VBjĤj�VBi

h�VBj�VBi
ð30Þ

The minimisation of EVB is more expensive computationally than the maximisation of SVB,
because it requires evaluation of the Hamiltonian matrix element h�VBjĤj�VBi and its
derivatives, but this may be achieved by adapting the efficient procedures already available
in various CASSCF codes. It turns out, however, that if one employs the same VB ansatz
within each of these two approaches, they tend to produce very similar �VB constructions
which, in practice, makes the maximisation of SVB the preferred procedure. Both
optimisations utilise reliable Newton–Raphson-based techniques involving first and
second derivatives.

The CASVB strategy for the fully-variational optimisation of modern VB wave
functions relies on a linked two-step iterative strategy. Just as in CASSCF, this starts with
choosing active and inactive spaces. An appropriate form for �VB must also be chosen.
The first ‘non-orthogonal’ step involves the minimisation of EVB using the CASVB
algorithms, whereas the second ‘orthogonal step’ involves orbital optimisation using
standard CASSCF procedures. When starting from a converged CASSCF wave function,
convergence to a final VB wave function which has a high overlap with the CASSCF one
(say, the SC wave function) can involve a very small number of iterations. This often
makes the CASVB calculation of SC wave functions somewhat cheaper than the older
traditional direct SC optimisation procedures [12,14]. The CASVB module is incorporated
in MOLPRO [29] and in MOLCAS [30].

It is usual to benchmark the performance of a SC wave function with N active orbitals
against an ‘N in N’ CASSCF construction. In the case of benzene, the amount of ‘non-
dynamic’ ‘6 in 6’ � space CASSCF correlation energy recovered by a SC wave function
with six orbitals amounts to ca. 90% [31–33]. If SC theory is used to study the evolution
of the electronic structure of a reacting system along a reaction path, the SC wave
function accounts, as a rule, for more than 90% of the CASSCF correlation energy.
In the case of the Diels–Alder reaction, the percentages are 92.9% at the transition
state (TS), and 95.4% and 95.8% at the intrinsic reaction coordinate (IRC) geometries at
�0.6 amu½bohr and 0.6 amu½bohr, respectively [34]. This shows that the single orbital
product SC wave function can often provide a reasonably close approximation to its
CASSCF counterpart, and it achieves that without the inclusion of ionic structures (i.e.
those with one or more doubly occupied active orbitals), which feature so prominently in
most applications of classical VB theory. The SC wave function may include smaller
amounts of the CASSCF correlation energy for molecules in which the active orbitals are
crammed together within a small volume of space. For example, for ethene (H2C¼CH2) a
SC wave function with four active orbitals engaged in two ‘bent’ bonds recovers 76.5% of
the ‘4 in 4’ CASSCF correlation energy, while for ethyne (HC�CH) a SC wave function
with six active orbitals engaged in three ‘bent’ bonds recovers 66.3% of the ‘6 in 6’
CASSCF correlation energy [35].

A distinct advantage of the SC approach over other VB methods, especially those
which retain more of the classical VB features, is that the SC wave function requires next
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to no ‘hand-tailoring’. In most cases, the input data for a SC calculation is similar to that
for a CASSCF calculation and involves just choosing a suitable basis set, the numbers
of core and active orbitals, and specifying initial guesses for these orbitals.

Similarly to MO-based approaches, such as Hartree–Fock and CASSCF, SC
calculations can converge to wave functions corresponding to different local minima in
terms of the variational parameters, some of which may not exhibit the full symmetry
of the nuclear framework. Choosing appropriate initial guesses for the core and active
orbitals is not always sufficient to ensure convergence to the lowest local minimum, or to a
solution of the required symmetry. The SC codes described in [14] utilise a second-order
constrained minimisation procedure which makes it straightforward to introduce simple
orbital symmetry constraints such as

cp� � 
p�q�ðRÞcq� ¼ 0 ð31Þ

where cp� is the coefficient of basis function �p in orbital  � and 
p�q�ðRÞ is a number
associated with a symmetry operation R of the symmetry group of the molecule: it can take
the values 0,� 1. These simple symmetry constraints can help enforce �–� separation
in conjugated systems and achieve convergence to ‘bent-bond’ solutions in systems with
multiple bonds [35]. Finding symmetry-adapted solutions for molecules that contain a
symmetry axis of an odd order (say, C3 or C5) may require more general symmetry
constraints of the form

cp� �
X
q, �

�p�q�ðRÞcq� ¼ 0 ð32Þ

where the values of �p�q�ðRÞ are not restricted to 0,�1. Symmetry constraints of this type
have been implemented in more recent versions of the SC codes described in [14].

Symmetry-constraint facilities are also available in CASVB [36].
While the use of symmetry constraints allows avoiding broken-symmetry solutions in

the majority of cases, it is important to emphasise that, as discussed in detail in [37], VB

wave functions that incorporate a single orbital product can be prevented from achieving
the full symmetry of the problem by construction. In such situations, the only way to
obtain a symmetry-adapted wave function is to use an appropriate symmetry projection
operator which, when applied to a single orbital product VB wave function, produces a VB
construction involving multiple orbital products.

One potential pitfall in SC calculations is associated with the fact that all SC orbitals
 � in Equations (1) and (9) are non-orthogonal and there is no mechanism that would
prevent three or more orbitals from trying to become the same during the variational
optimisation of the wave function. This is in contrast to standard MO theory, where the
orthogonality requirements allow no more than two spin-orbitals to be described by
the same spatial component. When three or more SC orbitals become very similar, the
antisymmetry requirement makes the norm of the SC wave function a very small number
which can lead to a numerical instability in the optimisation procedure and a convergence
failure. This situation, which can be aptly termed ‘self-annihilation’ of the SC wave
function, is observed for some oxygen-containing systems, for example, formaldehyde
(H2C¼O), in which an attempt to describe the carbon–oxygen double bond with a SC
wave function with four active orbitals succeeds only if one imposes �–� separation
through appropriate orbital symmetry constraints. In an unconstrained calculation,
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all four active orbitals ‘collapse’ onto the oxygen atom and the wave function optimisation
fails to converge. In order to prevent the ‘self-annihilation’ of the SC wave function
it would be necessary to find a way of ensuring that no more than two SC orbitals can
become the same during the wave function optimisation procedure. A requirement of this
type is far from straightforward to express analytically and to implement. Although the
CASVB strategy appears to be more robust with respect to this SC wave function ‘self-
annihilation’ than are direct codes [12,14], the problem is still not fully resolved. It is
important to emphasise that there is nothing that prevents one or several pairs of SC
orbitals from becoming the same. If two SC orbitals are identical, then all contributions to
the N-electron spin eigenfunction �N

SM [Equation (2)] from spin functions in which the
spins of these two orbitals are triplet-coupled become equal to zero, and these two orbitals
can be orthogonalised to all other SC orbitals (in other words, for all intents and purposes
the two identical SC orbitals become core orbitals [Equation (9)].

The spin-coupled valence bond (SCVB) approach [38], which is a non-orthogonal CI
expansion based on a SC reference, introduces a set of Fock-like one-electron operators,
one for each occupied SC orbital. The eigenvalues of these Fock-like operators resemble
orbital energies, and each occupied SC orbital usually represents the eigenfunction with
the lowest eigenvalue of its Fock-like operator. The remaining eigenfunctions of each
Fock-like operator form ‘stacks’ of virtual orbitals which can be used to construct
additional configurations for the non-orthogonal CI expansion. It is usual to consider only
‘vertical’ excitations, in which an occupied SC orbital is replaced only by virtuals from its
own ‘stack’. As a rule, the orbitals from each ‘stack’ turn out to be localised within the
same region of space which makes all excitations reasonably local. Perhaps the most
successful application of this SCVB strategy to date is the extremely thorough study of all
singlet and triplet valence excited states, as well as the n¼ 3,4 singlet and triplet Rydberg
states of benzene below the first ionisation potential at 9.25 eV carried out in [39]. The use
of the SCVB approach allowed the authors to classify the valence excited states as covalent
or ionic in a straightforward manner, and it was shown that covalent states were well
described using the usual assumption of �–� separation. The errors in the computed
transition energies to the ionic states were observed to be much larger, an indication that
these states require additional �–� correlation for their proper description. The use of
a suitable � core, derived from a calculation on the C6H6

þ cation, ensured very good
descriptions of the Rydberg states. This work showed that compact and easy-to-interpret
SCVB constructions are capable of describing excited states with numerical accuracy
comparable to that of much larger Hartree–Fock- or CASSCF-based CI expansions.

3. Applications of SC theory to organic chemical reactions

3.1. Background

Early indications that SC theory could provide useful descriptions of organic reactivity
were provided by studies of two reactions that involve singlet methylene (CH2) [40,41]. To
a first approximation, the SC description of singlet methylene resembles a standard VB
description of CH4, but with two of the hydrogen atoms missing. Such a description of the
non-bonding electrons is entirely different from the description afforded by the simplest
level of MO theory, in which these two electrons occupy a single orbital of a1 (�)
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symmetry, but it is well known that reliable MO descriptions of this state require at least
a two configuration description.

For the following reaction

H2þCH2ð
1A1Þ ! CH4

a SC study [41] of the simple symmetric approach of the two molecules, with the H2 axis
perpendicular to the C2 axis of CH2, suggests simultaneous breaking of the H–H bond and
formation of the two new C–H bonds. Such a pathway does, however, appear to have a
significant energy barrier. The form of the non-bonding orbitals for this state of CH2

suggests that we could usefully consider an entirely different sort of path, in which both of
the hydrogen atoms in H2 initially move along the axis of one of the non-bonding orbitals.
We found that as the distance from the carbon atom to the nearest incoming hydrogen
atom decreases to ca. 3 bohr, the H–H bond begins to break and the first of the new C–H
bonds begins to form. Simultaneously, the second hydrogen atom swings right around so
as to interact with the other non-bonding orbital of CH2, and it begins to form the second
C–H bond. Although one of the C–H bonds starts to form before the other, this process is
not completed before the second bond begins to form: overall, the process is synchronous.
There appears to be no energy barrier along this path [41].

A preference for a non-symmetric path is also a hallmark of the SC description of the
cycloaddition reaction of singlet methylene with ethene to form cyclopropane. For this
system we considered the asymmetric approach with CH2 impinging on one carbon atom
of ethene, with the plane of the carbene twisted in order to maximise the overlap of one of
its non-bonding orbitals with a p� orbital of ethene [40]. In this way the initial attack of the
soft electrophile (CH2) is concentrated on a single position of the soft nucleophile (ethene).
Ultimately, the new � bonds which close the cyclopropane ring form in a single step
according to the mechanism of a cheletropic reaction, and are consistent with the
observation of a single stereoisomer in such reactions. Indeed, it is easy to detect the
operation of a hook or claw in the evolution of the shapes of the SC orbitals [42].

Even when applied in an intentionally naı̈ve fashion, SC theory can produce interesting
insights into the way in which the reactants prefer to interact, as illustrated by the
description of one of the simplest cycloaddition reactions, namely the orbital-symmetry-
forbidden thermal dimerisation of two ethene molecules to cyclobutane [42]

2C2H4! C4H8

If we do not know anything about the mechanism of this reaction, one seemingly
reasonable idea might be to bring the two ethene molecules together face to face, without
even changing their geometries [Figure 4(a)].

The SC calculations for this mode of approach within the four-orbital active space
sketched in Figure 4(a) produce a repulsive interaction curve. Even at separations close to
typical single carbon–carbon bond lengths, the SC orbitals remain very similar to those in
isolated ethene molecules, while the active space spin-coupling pattern is dominated by
the reactant-like Rumer spin function (1–2,3–4). One obvious improvement is to allow the
positions of the hydrogen atoms and the lengths of the carbon–carbon bonds within the
two ethene moieties to relax with the decrease of the distance between the molecules. This
leads to a SC potential curve that is lower in energy than that obtained with rigid
geometries but, in agreement with the Woodward–Hoffmann rules, this new curve is
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still repulsive. However, a closer look at the changes within the SC wave function as the
ethene molecules approach one another reveals a clear hint about the nature of the actual
path followed by this reaction. With the decrease of the distance between the reactants, the
SC orbitals change in shape such that, instead of remaining engaged in a � bond within
one of the two ethene moieties, each orbital starts to shift away from its � bond partner
and towards the opposite orbital on the other reactant, as sketched in Figure 4(b). At the
same time, the SC orbitals start to attain sp3 character and to bend out of the rectangle
formed by the carbon atoms. There is a parallel change in the active space spin-coupling
pattern which gradually becomes dominated by the product-like Rumer spin function
(1–3,2–4). All of this suggests the formation of a strained ring structure which is too high
in energy to be able to influence the repulsive character of the potential curve. The ways in
which the SC orbitals deform clearly indicate that the strain can be relieved by abandoning
the concerted face to face approach and adopting a non-concerted reaction path leading to
a cis or trans TS (Figure 4c and 4d).

In fact, as is shown in [42], a more consistent SC description of the cycloaddition of two
ethene molecules requires use of eight SC orbitals. This arises because the reaction can be
viewed as a rearrangement of four methylene radicals, each of which needs two active
orbitals. An alternative justification is based on the utility of using a SC model of a single
ethene molecule that includes four active orbitals engaged in two bent bonds [35]. In
agreement with the MCSCF and MCSCF/MP2 results of Bernardi et al. [43], SC theory
predicts that the trans pathway has a lower potential barrier and leads to a biradical
intermediate of a lower energy. The minimum corresponding to the formation of a cis
biradical intermediate is rather shallow. The SC interpretation for these reactions makes

(a)

1

2

3

4

1

2

3

4

(b)

(c) (d)

Figure 4. Naı̈ve SC description of the orbital-symmetry-forbidden thermal cycloaddition of two
ethene molecules: (a) face-to-face approach with fixed geometries, (b) face-to-face approach with
optimised geometries, (c) end-to-end approach leading to a cis biradical, (d) end-to-end approach
leading to a trans biradical.
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use of the Serber spin basis and can be summarised as follows. The breaking of one of the

two carbon–carbon bent bonds in each C2H4 and simultaneous re-engagement of two of
the orbitals from the breaking bonds into a new carbon–carbon bond between the

reactants leads to the formation of a cis or trans tetramethylene biradical. The remaining

two electrons occupy distinctly non-bonding orbitals which resemble distorted carbon 2p
AOs. In parallel, the coupling between the spins of the electrons occupying the orbitals

involved in the breaking bonds changes from overwhelmingly singlet (within the separated

ethene molecules) to predominantly triplet (within the tetramethylene biradicals). This
picture, which closely resembles a dots and arrows scheme from a standard organic

chemistry textbook, was another early indication of the potential of SC theory as a tool
for interpreting the electronic mechanisms of chemical reactions.

The current procedure for constructing a SC model of the electronic mechanism of an

organic chemical reaction involves two steps. Firstly, the TS and a sequence of geometries

along the reaction path, also known as the IRC, in the directions of reactants and
products, are calculated using an existing efficient implementation of an appropriate high-

level MO theory or DFT approach. In principle, the transition structure can be optimised

at the SC level of theory using the CASVB module in MOLPRO [29], but it is usually more
convenient to use the efficient geometry optimisation and IRC algorithms implemented in

GAUSSIAN [44], in conjunction with a more conventional approach such as CASSCF,
MP2 or DFT. This first step is followed by a series of SC calculations at the geometries

along the reaction path and a detailed analysis of the results of these calculations.

Amongst other things, the analysis involves examining the variations in the shapes of the
SC orbitals and the overlaps between, and the changes to the mode of spin coupling.

This methodology has provided new, interesting and often unexpected insights into

the electronic mechanisms of a number of reactions, including the Diels–Alder reaction
between butadiene and ethene [34], the hetero-Diels–Alder reaction of acrolein and ethene

[45] and the retro Diels–Alder reaction of norbornene [46], the electrocyclicisation of

cyclobutene to cis-butadiene [47], the disrotatory electrocyclic ring opening of
cyclohexadiene to hexatriene [48], the 1,3-dipolar additions of fulminic acid to ethyne

[49,50], of diazomethane to ethene [51] and of methyl azide to ethene [52], the electrophilic

addition of hydrochloric acid to ethylene [53], SN2 identity reactions [54], the addition
reactions of singlet dihalocarbenes with ethene [55], the Claisen rearrangement of allyl

vinyl ether [56], the [1s,5s] hydrogen shift in (Z)-1,3-pentadiene [57] and the [1,3]

sigmatropic rearrangement linking bicyclo[3.2.0]hept-2-ene and norbornene [58]. The SC
models of these reactions have been shown to provide a theoretical vindication of the

popular homolytic and heterolytic reaction schemes, drawn using half-arrows (‘harpoons’)
and full-arrows, respectively, that can be found in many organic chemistry textbooks, in

a context which is slightly different from the standard textbook interpretation, but makes

very good sense from a quantum-chemical viewpoint. The half-arrows now indicate
changes in the shapes of individual orbitals, accompanying the breaking of the bonds in

which these orbitals participate in the reactants and their re-engagement in new bonds

within the product, rather than movements of electrons; the full-arrows correspond to
relocations of orbital, rather than electron pairs. An important feature of the SC models

for the electronic mechanisms of pericyclic reactions is the possibility of identifying

aromatic transition states, by looking for similarities with the well-known SC description
of benzene [31,32,59].
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3.2. Diels–Alder reactions

The SC description of the electronic mechanism of the Diels–Alder reaction between

cis-butadiene and ethene [34] uses a wave function with six active orbitals in order to

accommodate the four butadiene and two ethene � electrons involved in the bond-

breaking and bond-formation processes.
The calculations show that throughout the reaction each orbital remains well-localised

about one carbon atom. However, the spx character and the extent and direction of the

deformation of each orbital towards other orbitals change considerably along the reaction

path. Initially, the � bonds in butadiene are formed by the symmetry-related pairs of

orbitals ( 1, 2) and ( 3, 4), while the pair ( 5, 6) is responsible for the ethene � bond (see

the right-hand column of orbitals in Figure 5 which shows the symmetry-unique SC

orbitals  1,  2 and  6 at a distance of 0.6 amu½bohr along the reaction path from the TS

towards the reactants). At the TS (see the middle column of orbitals in Figure 5), it is not

difficult to notice that  1 and  6 are beginning to distort towards one another, while  2 is

beginning to distort towards its symmetry-related counterpart  3. At the same time, there

is an obvious decrease in the distortions (and overlap) linking  1 and  2. As shown in

Figure 6(a), the overlaps between all SC orbitals participating in breaking and forming

bonds become very much the same in the neighbourhood of the transition state. If we

continue to follow the reaction path towards the product (see the left-hand column of

orbitals in Figure 5), orbitals  1 and  6 become much more sp3-like, and become engaged

in one of the two new � bonds formed during the reaction. Similarly, the pair of orbitals

( 2, 3) becomes responsible for the newly-formed � bond.

Figure 5. Symmetry-unique SC orbitals for the Diels–Alder reaction. Orbitals  3,  4 and  5 can be
obtained from  2,  1 and  6 through reflections in the �h plane bisecting the ethene and central
butadiene C–C bonds. Distances along the IRC are measured in amu½bohr.
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The changes in the shapes of the SC orbitals are accompanied by a re-coupling of the

electron spins. For this reaction, it proves most convenient to express the total active space

spin function �6
00 in the Rumer basis. As can be seen in Figure 6(b), the two Kekulé-type

spin eigenfunctions (1–2,3–4,5–6) and (1–6,2–3,4–5) dominate �6
00 throughout the reaction

path. Function (1–2,3–4,5–6) reflects the spin-coupling pattern within the reactants, while

(1–6,2–3,4–5) corresponds to the spin-coupling pattern within the product. The weights of

these two Kekulé-like spin functions become equal in the vicinity of the transition state. At

this stage the orbital overlaps, the mode of spin coupling and the estimated ‘resonance

energy’ [34] indicate that the SC description of the reacting system is very similar to that of

benzene [31,32,59], and so there are good reasons to regard the TS as aromatic. In this

way, the SC study of the electronic mechanism of the Diels–Alder reaction [34] furnished

the first evidence of an aromatic transition structure derived directly from the analysis of a

post-Hartree–Fock wave function.
The changes in the SC orbitals and spin-coupling mode during the course of the

reaction strongly suggest that the Diels–Alder reaction between cis-butadiene and ethene

follows a homolytic mechanism that can be represented by Scheme A, in which six half-

arrows indicate the simultaneous breaking of the three � bonds on the reactants and

formation of the three new bonds, two � and one �, in the product.
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Figure 6. (a) Overlap integrals and (b) Spin-coupling weights for the Diels–Alder reaction.
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The SC description of the electronic mechanism of the hetero-Diels–Alder reaction
of acrolein (H2C¼CH–CH¼O) and ethene [45] was found to be very similar to that of
the Diels–Alder reaction between cis-butadiene and ethene. Despite the fact that this
concerted reaction is markedly asynchronous, with the breaking of the carbon–oxygen
� bond, and the formation of the new carbon–oxygen � bond, ‘lagging behind’ some-
what the other bond-making and bond-breaking processes, this reaction was found to
proceed through a homolytic mechanism similar to that shown in Scheme A. Once
again, it can be argued that soon after the transition state, following the reaction path
in the direction of the product, the reacting system passes through a geometry at which
it can be considered to be significantly aromatic.

More recently, a homolytic mechanism similar to that shown in Scheme A
and involving a TS displaying aromatic features emerged from the SC description of
yet another Diels–Alder reaction, namely the retro Diels–Alder reaction of norbornene
leading to cyclopentadiene and ethene [46]. This is a strong indication that the homolytic
mechanism in Scheme A and the aromatic TS represent general features of the SC model
for the electronic mechanism of Diels–Alder reactions.

3.3. Electrocyclic reactions

The SC description of the conrotatory and disrotatory pathways in the electrocyclic
isomerisation of cyclobutene to cis-butadiene [47] is one of the less successful
applications of SC theory to chemical reactions. The main difference between the
thermally-allowed conrotatory and thermally-forbidden disrotatory mechanisms was
found to be, just as in the CASSCF case, the lower potential barrier for the conrotatory
mechanism. Another difference is that, according to the SC model, at the conrotatory TS
the reacting system exhibits considerable cis-butadiene character, which is an indication
that the reaction is already well under way, while at the disrotatory TS the reacting
system still remains predominantly reactant-like (i.e. similar to cyclobutene) which can
be interpreted as a reluctance of the cycle to open in a disrotatory fashion. In both the
conrotatory and disrotatory cases, the sharp changes in the weights of the two spin
couplings, associated with the onset of bond breaking or bond formation, were observed
to occur at IRC geometries well beyond the transition state. Although SC theory is
capable of producing highly visual and easy-to-interpret descriptions of antiaromatic
systems (see e.g. [60,61]), it was not possible to distinguish even traces of antiaromatic
character in the SC wave functions for the conformations along the thermally-forbidden
disrotatory pathway. This is not very surprising because antiaromaticity is a property
which is much more elusive than aromaticity, especially if one is trying to find evidence
for it in the results of ab initio calculations. However, in the absence of such evidence,
SC theory fails to provide a simple qualitative explanation for the significant
destabilisation of the disrotatory transition state.

Much more successful is the SC description of the disrotatory electrocyclic ring
opening of cyclohexadiene to hexatriene [48]. Similarly to Diels–Alder reactions, a wave
function with six SC orbitals is required. The changes in the symmetry-unique SC orbitals
 1,  2 and  3 along the reaction path are illustrated in Figure 7. Reflection of  1,  2 and
 3 in the symmetry plane retained throughout the reaction results in  6,  5 and  4

respectively.
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When the cyclohexadiene ring begins to open (see the leftmost column of orbitals in
Figure 7),  1 and  6 still take the form of spx-like hybrids with significant s character.
The pairs ( 2, 3) and ( 4, 5) account for the � bonds in the cyclohexadiene ring. At the
TS (middle column in Figure 7) orbitals  2– 5 are starting to attain much the same
‘symmetrically-distorted’ shape as orbital  2 at the Diels-Alder TS (Figure 5). The
increased distance between the two terminal atoms is reflected in less distortion of  1

and  6 towards one another, and a reduced overlap. However, for this system, the most
dramatic changes in the orbital overlaps and in the mode of spin coupling occur a little
after the TS (Figure 8), when the carbon–carbon bond lengths in the chain become
almost equal. The near-perfect ‘resonance’ of two Kekulé-type modes of spin coupling,
namely the reactant-like (1–6,2–3,4–5) and product-like (1–2,3–4,5–6), as well as the near
equalisation of bond lengths and of orbital overlaps, suggests that this is another
reaction that passes through an ‘aromatic’ structure.

When the ring opening is approaching completion, the distance between the terminal
carbon atoms is significantly larger and orbitals  1 and  6 are now essentially � orbitals.
The three � bonds are accounted for by the pairs ( 1, 2), ( 3, 4) and ( 5, 6), and the
related Kekulé-type mode of spin coupling (1–2,3–4,5–6) becomes the most important, as
shown in Figure 8(b).

The orbitals remain associated with the same carbon atom throughout the reaction, but
there is a recoupling of the corresponding electron spins. As in the case of the Diels–Alder
reaction, it seems appropriate to label the changes as ‘homolytic’, as might be represented by
the simplistic representation in Scheme B. One difference from the Diels–Alder reaction,
however, is that for this reaction the aromatic structure occurs a little after the TS [48].

Figure 7. Symmetry-unique SC orbitals for the disrotatory electrocyclic ring-opening of
cyclohexadiene.
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Figure 8. (a) Overlap integrals and (b) spin-coupling weights for the disrotatory electrocyclic ring-
opening of cyclohexadiene.
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3.4. 1,3-Dipolar cycloaddition reactions

The nature of the electronic rearrangements that take place during 1,3-dipolar
cycloaddition reactions has been a long-standing debating point amongst theoretical
chemists. In the case of the 1,3-dipolar cycloaddition reaction between fulminic acid and
ethyne, both SC [49] and restricted Hartree–Fock (RHF) [62,63] treatments suggest a
heterolytic mechanism illustrated by Scheme C1 which involves the movement of
electron pairs that are retained throughout the course of the reaction (the N to O arrow
indicates that the corresponding N–O � bond is strongly polarised towards the oxygen
atom). However, in the case of the 1,3-dipolar cycloaddition reaction involving
diazomethane and ethene, the SC analysis [51] produces Scheme D, whereas RHF
theory [62,64,65] suggests an electron flow in the opposite direction, of the type illustrated
by Scheme C2.
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Nguyen et al. [66] argued that the 1,3-dipolar cycloaddition reaction between fulminic
acid and ethyne should be described by Scheme C2. Two approaches were used, the first
of which, CI-LMO-CAS, involves localisation of the ‘6 in 5’ CASSCF active space
orbitals and analysis of the weights of the configurations when expressed in terms of
these localised orbitals. However, the two configurations, which were thought to be
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responsible for the reaction mechanism, do not dominate the CASSCF wave function: they

have a combined weight that never exceeds ca. 44%. The ‘6 in 5’ active space requires one

of the active orbitals to be doubly-occupied and this orbital localises around the more
electronegative atoms, O and N, which explains the direction of the leftmost arrow in

Scheme C2. It is also possible to voice concerns about the predictive power of the second

approach, which was based on the application of DFT-based reactivity descriptors to
fulminic acid, not least because it examined an isolated molecule which was ‘unaware’ of

the presence of the other reactant and had a linear equilibrium geometry, very different

from its conformation near the transition state.
Harcourt’s qualitative classical VB analysis [67] led to the formulation of a ‘concerted

biradical’ mechanism for 1,3-dipolar cycloaddition reactions (see also [68] and references
therein). This combination of terms may sound unusual to those dealing with pericyclic

reactions (as a rule, within the accepted terminology, ‘biradical mechanism’ is synonymous

with a non-concerted, stepwise mechanism involving a biradical intermediate), but in this
instance ‘biradical’ was used to denote a homolytic electronic rearrangement. Harcourt

and Schulz [69] also discussed possible homolytic mechanisms for the 1,3-dipolar

cycloaddition reaction between fulminic acid and ethyne. These mechanisms are illustrated

by Schemes C3 and C4. The dots on the two sides of the O–N bond in C3 correspond to
singly-occupied �x(ON) and �y(ON) localised MOs, while the thick and thin lines in C3

and C4 represent ‘normal’ and ‘fractional’ ‘electron-pair bonds’ in Harcourt’s notation.

According to Harcourt and Schulz, the preferred scheme should be Scheme C3. The
presence of mutually perpendicular � localised MOs in this scheme follows from the fact

that the analyses of the reaction mechanisms corresponding to C3 and C4 in [69] were

based on the electronic structure of HCNO at its linear gas phase equilibrium geometry

and did not take into account the presence of the second reactant and the changes in the
geometry of the reacting system along the reaction path. As a rule, the wave functions used

by Harcourt and co-workers are molecule-specific, carefully hand-crafted VB construc-

tions which are defined within a fairly minimal set of basis functions. Wave functions of

this type cannot ordinarily be expected to provide a consistent picture of electronic
structure changes along a general reaction path, because the hand-tuning required at

different points along this path might well produce different wave function constructions.

Harcourt and Schulz criticised Scheme C1 (and, effectively, Scheme C2) stating that
this scheme should involve charge transfer between the species. This is not correct. The 1,3-

dipolar cycloaddition reaction between fulminic acid and ethyne is a concerted, almost

synchronous process and so all electron rearrangements depicted by Schemes C1 and C2

take place simultaneously, without any noticeable charge transfer between the reactants.
Although the terms ‘heterolytic’ and ‘homolytic’ can be used to distinguish between

mechanisms C1 and A, these do not imply the existence of any biradical or zwitterionic

intermediates [34].
Sakata [70] carried out a Hartree–Fock-level population analysis along the reaction

path of the 1,3-dipolar cycloaddition reaction between fulminic acid and ethyne. His

results suggest a mechanism described by Scheme C5, which is very similar to C1 and in

line with previous Hartree–Fock-level results.
In a discussion about the existing models for the electronic mechanism of the

HCNOþC2H2 1,3-dipolar cycloaddition reaction that was initiated by Nguyen et al. [71]

(see also the replies [50,68]), those authors claimed that the contrast between the
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predictions coming from two very different VB treatments (compare Scheme C1 [49] to C3

and C4 [69]) was an indication that VB theory was unable to provide credible coherent
results about the electronic structure rearrangements that take place during 1,3-dipolar

cycloaddition reactions. In fact, although the results of the existing SC calculations had

suggested the heterolytic mechanisms C1 and D for the 1,3-dipolar cycloaddition reactions
between fulminic acid and ethyne, and diazomethane and ethene, respectively, there are no

restrictions within the wave function ansatz which would prevent SC theory from

predicting homolytic mechanisms for other 1,3-dipolar cycloaddition reactions. This was
confirmed by the SC analysis of the electronic mechanism of the 1,3-dipolar cycloaddition

reaction between methyl azide (CH3N3) and ethene [52] which showed that this reaction
should follow a homolytic mechanism.

It is informative to examine and to compare the most important features of the

heterolytic and homolytic mechanisms proposed by SC theory for the 1,3-dipolar

cycloaddition reactions between fulminic acid and ethyne [49], and between methyl azide
and ethene [52]. The changes in the shapes of the six SC orbitals during the 1,3-dipolar

cycloaddition of fulminic acid to ethyne are illustrated in Figure 9. When the reacting

molecules are far apart (see the rightmost column of orbitals in Figure 9), the orbitals on
HCNO ( 1,  3,  5 and  6) reproduce the well-known SC model for the electronic

structure of 1,3-dipoles, in which the central heavy atom can be considered ‘hypervalent’
(see e.g. [72,73]). The nitrogen atom in HCNO appears to take part in more than four

covalent bonds: an almost triple bond between C and N ( 3 and  6 account for one of the

components of this bond, which is of � symmetry in linear HCNO), a � bond between
N and O and a highly polar bond between N and O (of � symmetry in linear HCNO,

described here by orbitals  1 and  5). The remaining two orbitals,  2 and  4, form the

ethyne bond (of � symmetry in linear C2H2) that breaks during the reaction.
A clear representation of the spin-coupling pattern at this stage of the cycloaddition

process can be achieved by reordering the SC orbitals so as to put in pairs the orbitals

involved in the three bonds:  2 and  4,  6 and  3, and  5 and  1. The spin-coupling
pattern for the reordered orbital set is largely dominated by its ‘perfect-pairing’

component (in the Kotani spin basis K�6
00;5 ¼ ð

1
2 0

1
2 0

1
2Þ), in which the orbital pairs

( 2, 4), ( 6, 3) and ( 5, 1) are singlet-coupled. The composition of the spin-coupling
pattern changes very little throughout the cycloaddition process; this indicates that these

orbital pairs are preserved all the way from reactants to product. One of the orbitals

within each of the orbital pairs ( 2, 4) and ( 5, 1) undergoes profound changes along
the reaction path. Orbital  2, which starts as one of two orbitals involved in the in-plane

ethyne ‘�’ bond, becomes at the TS a linear combination of two spx hybrids, one at its
‘original’ ethyne carbon atom, and another one at the HCNO carbon atom. After the

transition state, this orbital moves away from the ethyne carbon atom and it localises

onto the HCNO carbon atom. The other orbital within this pair,  4, experiences
extensive ‘re-hybridisation’. As a result, after the TS (see the leftmost column in

Figure 9), orbitals  2 and  4 become responsible for one of the two bonds closing

the isoxazole ring. Orbital  5 starts as one of the orbitals from the in-plane polar ‘�’
N–O bond in HCNO, but at the TS it becomes, similarly to orbital  2, a mixture of two

spx hybrids, one of which is at its original location (the oxygen atom) and the other

one is at the approaching ethyne carbon atom. After the transition state, this orbital
shifts to a large extent to the ethyne carbon atom. The second orbital in this pair, orbital
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 1, changes very little throughout the reaction. After the transition state, orbitals  5 and
 1 form the second bond closing the isoxazole ring. The orbitals from the pair ( 6, 3)
are initially engaged in the in-plane C–N ‘�’ bond in HCNO. Both orbitals remain
largely static, moving just enough so as to form, by the end of the reaction, a non-
bonding pair on the isoxazole nitrogen atom, partially polarised towards the
oxygen atom.

The fact that, throughout the part of the reaction path studied at the SC level of theory,
the active space spin-coupling pattern remains dominated by a single component, indicates
that there is no significant resonance that could be associated with aromatic properties.
Thus, it is safe to assume that the reacting system remains non-aromatic throughout the
course of the reaction.

Figure 9. Shapes of the six SC orbitals at different stages of the 1,3-dipolar cycloaddition of fulminic
acid to ethyne.
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The orbital pair shifts responsible for the bonding rearrangements associated with the

1,3-dipolar cycloaddition of fulminic acid to ethyne can be summarised through the

homolytic Scheme C1 in which the leftmost, middle and rightmost arrows depict the shifts
of ( 6, 3), ( 5, 1) and ( 2, 4), respectively. Apart from some relatively minor differences

in the ‘timelines’ of changes in the shapes of some of the orbitals along the reaction path,

the essential features of this mechanism are repeated in the SC analysis of the 1,3-dipolar
cycloaddition reaction between diazomethane and ethene (Scheme D) [51].

The SC descriptions of the electronic mechanisms of the 1,3-dipolar cycloaddition

reaction between fulminic acid and ethyne, and between diazomethane and ethene involve

bond rearrangements, achieved through the movement of singlet orbital pairs through

space, during which at least one of the orbitals within a pair becomes completely detached
from the atomic centre with which it was associated initially and ends up localised around

another centre. The ability of the SC wave function to produce a description of this type

follows from the fact that the SC orbitals are singly-occupied non-orthogonal functions.
A classical-style VB approach, which makes use of orbitals strictly associated with atomic

centres, would need a number of additional and, in this case, rather unphysical, ionic

structures in order to compensate for the insufficient flexibility of these orbitals along the

reaction path.
The SC wave function used to describe the electronic mechanism of the 1,3-dipolar

cycloaddition reaction between methyl azide and ethene involves eight active orbitals [52].

The changes in the shapes of the SC orbitals during this reaction are illustrated in Figure 10.

At the ‘before transition state’ geometry (see the top group of orbitals in Figure 10), the
pair ( 4, 5) corresponds to the ethene � bond, while the remaining six orbitals are all on

the methyl azide. The pair ( 1, 6) is responsible for the nearly � bond between the

central nitrogen atom and theN atom connected to the methyl group, while the two nearly �
bonds between the central and terminal nitrogen atoms are described by the orbital
pairs ( 2, 3) and ( 7, 8). The ‘before transition state’ active space spin-coupling

pattern is strongly dominated by reactant-like Rumer spin functions, which couple to

singlets the spins of orbitals residing on the same reactant only. Of these, the most
important one is (1–6, 2–3, 4–5, 7–8), which is in line with the assignments of orbital pairs

to bonds.
The shapes of the orbitals at the TS (see the middle group of orbitals in Figure 10) are

more product-like. Two new pairs, ( 3, 4) and ( 5, 6), reflect the formation of the two
new bonds closing the ring, whereas  1 and  2 are about to become responsible for the

lone pair on the central nitrogen in the product, while  7 and  8 now clearly form the

almost � component of the N¼N bond. The main contribution to the active space spin-

coupling pattern now comes from the Rumer spin eigenfunction (1–2, 3–4, 5–6, 7–8) in
which the spins of all pairs of active orbitals which are becoming involved in bonds or in

the central nitrogen lone pair in the product are coupled to singlets. Second in importance

is the Rumer spin eigenfunction (1–2, 3–6, 4–5, 7–8) which, in contrast to the function

(1–2, 3–4, 5–6, 7–8), is reactant based. It couples to singlets the spins of the active orbitals
that are becoming engaged in the central nitrogen lone pair ( 1, 2), the orbitals that were

initially involved in the ethene � bond ( 4 and  5), the orbitals that initially described one

of the components of the N�N bond in methyl azide and, later, the almost � component
of the N¼N bond in the product ( 7 and  8), and of the two orbitals which reside on

different ends of the 1,3-dipole ( 3 and  6).
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As the reactants approach one another, the weight of Rumer spin function (1–2, 3–6,
4–5, 7–8) starts to increase, in parallel with the decrease of the weight of spin function
(1–6, 2–3, 4–5, 7–8), and it peaks near the transition state. This finding, in combination
with the observed changes in the shapes of the valence orbitals and their overlaps
indicates that, on approaching the transition state, the bonds realised by the orbital pairs
( 1, 6) and ( 2, 3) gradually weaken; this is accompanied by the formation of a lone
pair on the central nitrogen, represented by the singlet-coupled orbitals  1 and  2. As
the new bonds involving  3 and  6 are not yet fully developed, the active space spin
function in the vicinity of the TS displays competition (or ‘resonance’) between two spin-
coupling patterns: the product-like (1–2, 3–4, 5–6, 7–8) and the reactant-based (1–2, 3–6,
4–5, 7–8). These patterns differ only in the mode of coupling of the spins of the four
orbitals responsible for the two new bonds closing the ring:  3,  4,  5 and  6. The large
spatial separation and the low overlap between orbitals  3 and  6 suggests that the

Figure 10. SC orbitals at various stages of the 1,3-dipolar cycloaddition of methyl azide to ethene.

International Reviews in Physical Chemistry 195

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
4
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



presence of the less important pattern (1–2,3–6,4–5,7–8) is an indication that the reacting
system attains, near the transition state, some singlet biradical character. However, there
is no hint of the benzene-like ‘resonance’ that is observed near the transition states of the
Diels–Alder reaction between butadiene and ethene [34] and for the electrocyclisation of
hexatriene [48].

The ‘after transition state’ SC picture (see the bottom group of orbitals in Figure 10)
shows a further development of the product-like features observed at the transition state.
The only particularly noticeable changes in the forms of the SC orbitals are some
‘compacting’ of the lone pair orbitals  1 and  2. The active space spin-coupling pattern is
largely dominated by the product-like function (1–2,3–4,5–6,7–8), while the weight of the
reactant-based singlet biradical pattern (1–2,3–6,4–5,7–8) becomes so low that it is safe to
ignore its contribution.

Throughout the 1,3-dipolar cycloaddition reaction of methyl azide with ethene, each
SC orbital remains distinctly associated with a single atom while its form, overlap with
other SC orbitals and participation in the active space spin-coupling pattern adjust to
accommodate the differences in the nature of the bonding in the reactants and product.
The bond-breaking and bond-formation processes realised in this way can be illustrated
through a homolytic scheme (Scheme E) which is similar to Scheme C4.

N

N
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3.5. Sigmatropic rearrangements

Various geometric, energetic and magnetic criteria strongly suggest that the transition
structure of the [1,5]-H shift in Z-1,3-pentadiene is aromatic [74,75]. As a consequence, it
would have been reasonable to expect that the SC description of this reacting system near
the TS would show benzene-like features and that it would very much repeat the picture
observed for the prototypical Diels–Alder reaction [34]. In fact, the SC description of the
TS of the [1,5]-H shift in Z-1,3-pentadiene [57] turns out to be markedly different. The
active space is found to involve two strongly interacting three-orbital moieties, one of
which (centred on the carbon atom opposite the shifting hydrogen atom) is almost
identical to the three-orbital ‘antipair’ SC picture of the � active space in the allyl radical
[76], while the second one (centred on the shifting hydrogen) is very similar in nature, but
involves more �-like orbitals. However, in previous SC work ‘antipairs’ had often been
associated with antiaromaticity and radical or diradical character (see e.g. the SC
description of square cyclobutadiene [60]). The detailed analysis carried out in [57] showed
that, on their own, ‘antipairs’ should not in fact be considered as a sign of antiaromaticity
or diradical character, as these can be observed even within an alternative � space SC wave
function for benzene. Indeed, ‘antipairs’ can be expected to appear within the SC
descriptions of reactions which follow heterolytic mechanisms (involving movements of
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orbital pairs) and pass through aromatic transition states; this was observed for the first

time in the SC study of the [1,5]-H shift in Z-1,3-pentadiene.
The [1,5]-H shift in Z-1,3-pentadiene is a degenerate pericyclic process for which the

IRC is symmetric with respect to the transition state. As a result, it is sufficient to examine

the changes in the SC wave function along just one of the two possible directions starting

at the transition state. The shapes of the six SC orbitals at the reactant geometry (which

coincides with that of the product), at two intermediate IRC geometries, and at the TS are

shown in Figure 11.
At the reactant/product geometry (see the leftmost column in Figure 11), the six SC

orbitals are engaged in three well-defined bonds. The pair ( 1, 2) is responsible for the

� bond attaching the hydrogen atom that migrates during the course of the reaction from

the leftmost carbon atom (C1) to the rightmost carbon atom (C5), while the remaining

two pairs, ( 3, 4) and ( 5, 6), describe the diene � bonds.
During the course of the reaction both orbitals from the pair ( 1, 2) develop

distortions towards C5. Orbital  1 remains associated with the migrating H atom while,

Figure 11. SC orbitals at various stages of the [1,5]-H shift in Z-1,3-pentadiene. Distances along the
IRC in amu½bohr.

International Reviews in Physical Chemistry 197

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
4
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



by the end of the reaction, its partner  2 shifts from C1 onto C5. At the transition state,

 2 looks very much like the in-phase superposition of two sp3-like hybrids, based on C1

and C5. The changes within orbital pair ( 3, 4) closely parallel those within ( 1, 2):  4

remains attached to C3, while  3 relocates from C2 onto C4. At the transition state,  1,  2,

 3 and  4 are symmetric with respect to the �h plane passing through C3 and the migrating

H atom. Away from the transition structure the pair ( 5, 6) is responsible for a � bond

(C4–C5 in the reactant, and C1–C2 in the product). At the transition state,  5 and  6 are

semilocalised over two atomic centres and both orbitals are antisymmetric with respect to

the �h plane. The composition of the spin-coupling pattern and the orbital overlaps clearly

indicate that the orbital pairs ( 1, 2), ( 3, 4) and ( 5, 6) are preserved throughout

the reaction path. The movements of these three orbital pairs during the [1,5]-H shift in

(Z)-1,3-pentadiene can be described using Scheme F,

H

F

H

which suggests that the reaction proceeds through a heterolytic mechanism that is

markedly different from that depicted in the textbook-style Scheme G.

H H

G

Scheme F involves an unusually long-range relocation of orbital pair ( 5, 6) which, at first

glance, is difficult to accept. However, a closer examination of Scheme G shows that the

required movements of the orbital pairs responsible for the diene � bonds cannot be

described by a SC wave function which reproduces the Cs symmetry of the transition

structure. The shifts of orbital pairs ( 1, 2) and ( 3, 4) shown in Scheme F are consistent

with the Cs symmetry of the transition structure, but then the only option left to ( 5, 6) is

to relocate across the ring.
Further insights into the electronic structure of the TS for the [1,5]-H shift in (Z)-1,3-

pentadiene, can be gained by reordering the orbitals in the SC wave function as

�6
00 ¼ Â½ðcoreÞ 1 2 3 4 5 6�

6
00� ¼ Â½ðcoreÞ 2 6 1 4 3 5�

6
00

0

� ð33Þ

where

�6
00

0

¼
X5
k¼1

SC0k
0 S�6

00;k ð34Þ
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stands for the spin-coupling pattern corresponding to the new ordering of the SC orbitals,
expressed in the Serber spin basis. This new ordering of the SC orbitals allows the
identification of two ‘antipairs’, involving orbitals  3 and  5, and  2 and  6, respectively.
The spins of the orbitals from an ‘antipair’ are almost entirely triplet-coupled, which is not
easy to notice within a spin basis other than the Serber one.

The orbital shapes and coupling of spins within the second group of three orbitals in
the ‘reordered’ SC wave function,  4,  3 and  5, closely resemble the SC description of the
� space of the allyl radical [76]. The first three orbitals,  2,  6 and  1, are of
predominantly � character but exhibit similar properties. This shows that at the TS the SC
active space for the [1,5]-H shift in (Z)-1,3-pentadiene involves an allyl-like moiety and its
�-space equivalent. Another example of a SC active space comprised of two allyl-like
moieties involving ‘antipairs’ was observed in the TS for the Cope rearrangement of
1,3,4,6-tetracyano-1,5-hexadiene [77].

The SC wave function at the TS for the [1,5]-H shift in (Z)-1,3-pentadiene is very
different from two decidedly ‘aromatic’ SC wave functions, namely those for benzene and
for the TS of the Diels–Alder reaction, in both of which the SC orbitals are numbered and
ordered in a clockwise fashion around the ring. However, as shown in [57], if the orbitals in
benzene are reordered as  2 6 1 4 3 5 and the spin-coupling pattern is expressed in the
Serber spin basis, the description becomes very similar to that at the TS for the [1,5]-H
shift in (Z)-1,3-pentadiene. An additional symmetry-constrained SC calculation on
benzene produced an ‘antipair’ solution which is only about one millihartree above the
well-known unconstrained solution which is found to possess localised orbitals. The
orbitals from the ‘antipair’ solution are shown in Figure 12 (the orbitals from the standard
solution are visually indistinguishable from  1).

As the very small energy gap between the standard and ‘antipair’ SC solutions for
benzene makes the latter a viable alternative description of the molecule, it can be argued
that the TS for the [1,5]-H shift in (Z)-1,3-pentadiene should be considered to be aromatic.
The fact that it is possible to devise a SC wave function for benzene which involves
‘antipairs’ and that is only 1 millihartree above the well-known standard SC wave
function, indicates that the presence of ‘antipairs’ in a SC description should not be
considered, on its own, as a reliable indication of antiaromatic, radical or diradical
character.

The SC description of the electronic mechanism of the thermally-allowed suprafacial
[1,3] sigmatropic shift linking bicyclo[3.2.0]hept-2-ene and bicyclo[2.2.1]hept-2-ene
(norbornene) [58], shown in Scheme H, provided interesting insights into the way in
which bonds break and form along the ‘suprafacial with inversion’ pathway, and revealed

Figure 12. Symmetry-unique SC orbitals from the ‘antipair’ wave function for benzene.
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in a very clear way the singlet diradical character of the reacting system in the
neighbourhood of the transition state.

4

3

2

1

5

3
2

1
5

4

6

77

6

H

The four active orbitals  1– 4 for the ground state SC(4) wave function are displayed
in Figure 13 for four representative geometries along the IRC. At the beginning (rightmost
column) and end (leftmost column) of this reaction, each SC orbital is well localised at one
carbon atom. Orbitals  1 and  2 resemble two sp3-like hybrids involved in a � bond,
C1–C7 for the reactant and C3–C7 for the product. Orbitals  3 and  4 each resemble
distorted 2p� AOs, with tails in each other’s direction, forming the � bond in the reactant
(C2–C3) and in the product (C1–C2). Moving from the reactant geometry towards the
transition state,  1 remains well-localised at C7, but changes its shape to that of a 2p� AO
whilst turning by about 90� around the C–C bond between C6 and C7. Approaching the

Figure 13. The SC orbitals at various stages of the gas-phase [1,3] sigmatropic rearrangement
linking bicyclo[3.2.0]hept-2-ene and bicyclo[2.2.1]hept-2-ene (norbornene). Distances along the IRC
in amu½bohr.
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product, this orbital rotates further in the same direction and, as shown in Figure 13, it

completes a 180� turn (consistent with inversion of the configuration at C7) so as to
become involved in the new � bond to C3. During the reaction,  2 shrinks at C1, where it

was located (as an sp3-like orbital) for the reactant, and it grows at C3. As can be seen from
Figure 13, it actually takes the form at the TS of an antisymmetric combination of two 2p�
AOs which are semilocalised on two non-neighbouring atomic centres (C1 and C3). Nearer
the product,  2 evolves into an sp3-like orbital at C3. Throughout the reaction,  3 remains

localised at C2, simply changing its direction of distortion from C3 to C1. On the other
hand,  4 moves between C3 and C1, in the direction opposite to that seen for  2.

Furthermore, unlike  2, orbital  4 takes the form of a symmetric combination of 2p�
atomic orbitals on C1 and C3 at the transition state, with also some density associated with

C2. Nearer the product, it evolves into a distorted 2p�-like orbital on C1.
Throughout the reaction path, the spin-coupling pattern remains dominated by the

spin function which couples the spins of the electrons within the orbital pairs ( 1, 2) and

( 3, 4) to singlets. However, around the TS the orbital overlap h 1| 2i drops to rather low
values which, in combination with the shapes of these singlet-coupled orbitals (see the TS

column in Figure 13), is a clear indication of singlet biradical character.

3.6. SN2 identity reactions

As demonstrated in [54] SC theory can also provide a clear picture of the electronic
rearrangements taking place during gas phase SN2 identity reactions,

Cl�þRCl! ClRþ Cl�

where R is an alkyl group. As the generally accepted notion is that these reactions involve
four active electrons, two from the forming � bond and two from the breaking � bond, the

SC calculations were performed with a wave function including four active orbitals. For all
of the SN2 identity reactions studied it was observed that these four orbitals are engaged in

two pairs, both of which are preserved during the course of the reaction. Initially, one of
the orbitals pairs is on the incoming nucleophile and the other one is engaged in the R–Cl

bond. At the transition state, the bond-formation and bond-breaking processes are almost
equally advanced and the pairs are responsible for the bonding interactions between R and

the incoming and leaving nucleophiles (Figure 14). Beyond the transition state, the pair
that was initially on the incoming nucleophile becomes engaged in the forming bond, while

the other pair localises onto the leaving nucleophile.
It is informative to compare the shapes of the SC orbitals at the transition states of the

reactions involving CH3Cl and Cl�, CH3CH2Cl and Cl� and C(CH3)3Cl and Cl�. Whereas

the transition states for the CH3Cl and Cl� and for the CH3CH2Cl and Cl� reactions show
well-defined Cl–C–Cl bonding interactions, slightly weakened for the second reaction, the

SC model for the TS of the SN2 gas-phase identity reaction between C(CH3)3Cl and Cl�

can be described fairly accurately as involving a C(CH3)3
þ carbocation ‘clamped’ between

two Cl� anions. This suggests a tendency for a switch from the SN2 to the SN1 mechanism.
A mechanism of this type cannot be properly described within a gas-phase study, but it is

obvious that in the presence of suitable solvent molecules the components of the TS would
separate to form individual solvated C(CH3)3

þ and Cl� ions.
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It is also interesting to compare different halogens. The SC descriptions of the
CH3ClþCl� and CH3F+F� gas-phase SN2 identity reactions were found to be
qualitatively similar, but a significantly larger extent of bond formation was observed at
the TS for the fluorine case, with electronic rearrangements starting within a much earlier
region of the reaction path.

3.7. Future developments

The last few years have continued to see a rapid increase in the number of applications
of CASSCF-based approaches to chemical problems. Typically the numbers of active
electrons treated in such studies are such that analogous SC calculations would already be
entirely practical using existing codes. On the other hand, not all choices of CASSCF
active space are likely to lead to easy-to-interpret SC descriptions that are based on a single
orbital product. In general, we are currently interested mostly in choices of active space for
which the number of orbitals matches the number of electrons. In some instances, this may
require using a larger SC active space than would usually be considered in a CASSCF
treatment [42]. Nonetheless, there is certainly a very wide range of interesting problems
in organic reactivity to which SC theory could already be applied.

Given that it represents the most general ansatz which employs a single orbital product,
an important next step could be to make better quantitative use of the SC wave function
in subsequent calculations that take proper account of dynamic electron correlation. In
contrast to the most popular spin-adapted single orbital product wave function, namely
the closed-shell Slater determinant used in RHF theory, the SC wave function, just like
its CASSCF counterpart, can usefully be calculated at practically any geometry on the
potential energy surface for any reaction as long as the chosen active space is sufficient to
describe all bond-breaking and bond-formation processes. This potentially makes the SC
wave function a highly appropriate reference for developing higher-level CI, many-body
perturbation theory or coupled-cluster (CC) approaches. Several CI and multi-reference
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Figure 14. The SC orbitals at the transition states of the SN2 identity reactions involving (a) CH3Cl
and Cl�, (b) CH3CH2Cl and Cl� and (c) C(CH3)3Cl and Cl�.
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(MR) post-SC methods have already been formulated, including SCVB [38], SCVB*
[78–80], MR-SCVB* [80,81] and GMCSC [82,83]. Various multi-reference spin-coupled
(MRSC) calculations can also already be carried out using the CASVB module, as
incorporated in MOLPRO [29] and in MOLCAS [30]. However, the real challenge is of
course to develop SC-based equivalents of size-consistent and size-extensive HF-based
approaches such as MP2 and CCD. Additionally, QM/MM approaches in which the QM
part includes a SC or MRSC construction could become powerful tools for studying the
electronic mechanisms of biologically-important reactions.

4. Conclusions

Spin-coupled theory provides highly visual direct insights into the electronic rearrange-
ments that accompany the bond-breaking and bond-formation processes in organic
chemical reactions. Being based on the most general wave function constructed from a
single orbital product, it arguably represents the highest level of theory at which one can
obtain directly such orbital models of correlated electronic structure. series of SC
calculations along the minimum energy paths of a wide range of reactions have provided
new, interesting and often unexpected insights into the electronic mechanisms of such
reactions. In some cases, the descriptions that can be found in standard organic chemistry
textbooks are faithfully reproduced, except for important differences as to the precise
meanings of dots and arrows schemes. In other cases, the SC descriptions do not follow
traditional expectations but, with hindsight, do make considerable sense. As well as being
useful in their own right, such SC descriptions can also provide benchmarks for assessing
the veracity of qualitative descriptions extracted less directly by analyzing MO-theory and
DFT electron densities.

Note

1. The much read author Lewis Carroll made extensive use of words formed by merging parts of
two or more other words. For example, he used ‘slithy’ to mean ‘lithe and slimy’, with two
meanings packed up in one word (portmanteaux). Remembering that ‘CASSCF’ is the standard
abbreviation for complete active space self-consistent field, and that ‘SCVB’ has been used as
an abbrevation for spin-coupled valence bond, the name ‘CASVB’ comes about as if you started
by saying ‘CASSCF’ but, part way through, decided that what you had really wanted to say is
‘SCVB’. (Other groups have instead adopted the label CASVB as an abbreviation for complete
active space valence bond, and have named calculations and codes accordingly.)
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